รูปสามเหลี่ยม (Triangle)
คือ หนึ่งในรูปร่างพื้นฐานในเรขาคณิต เป็นรูป 2 มิติ ที่ประกอบด้วยจุดยอด 3 จุดและด้าน 3 ด้านที่เป็นส่วนของเส้นตรง
ชนิดของรูปสามเหลี่ยม รูปสามเหลี่ยมแบ่งชนิดตามความยาวของด้านได้ดังนี้
- รูปสามเหลี่ยมด้านเท่า มีด้านทุกด้านยาวเท่ากัน รูปสามเหลี่ยมด้านเท่าจะเป็นรูปมุมเท่าอีกด้วย นั่นคือ มุมภายในทุกมุมจะมีขนาดเท่ากัน คือ 60°
- รูปสามเหลี่ยมหน้าจั่ว มีด้านสองด้านยาวเท่ากัน รูปสามเหลี่ยมหน้าจั่วจะมีมุมสองมุมมีขนาดเท่ากัน
- รูปสามเหลี่ยมด้านไม่เท่า ด้านทุกด้านจะมีความยาวแตกต่างกัน มุมภายในในรูปสามเหลี่ยมด้านไม่เท่าจะมีขนาดเแตกต่างกัน
![]() | ![]() | ![]() |
รูปสามเหลี่ยมด้านเท่า | รูปสามเหลี่ยมหน้าจั่ว | รูปสามเหลี่ยมด้านไม่เท่า |
รูปสามเหลี่ยมแบ่งชนิดตามขนาดของมุมภายในที่ใหญ่ที่สุด อธิบายด้วยองศา
- รูปสามเหลี่ยมมุมฉาก มีมุมภายในมุมหนึ่งมีขนาด 90° (มุมฉาก) ด้านที่อยู่ตรงข้ามกับมุมฉาก คือ ด้านตรงข้ามมุมฉาก ซึ่งเป็นด้านที่ยาวที่สุดในรูปสามเหลี่ยมมุมฉาก อีกสองด้าน คือ ด้านประกอบมุมฉาก
- รูปสามเหลี่ยมมุมป้าน มีมุมภายในมุมหนึ่งมีขนาดใหญ่กว่า 90° (มุมป้าน)
- รูปสามเหลี่ยมมุมแหลม มุมภายในทุกมุมมีขนาดเล็กกว่า 90° (
การหาพื้นที่ของรูปสามเหลี่ยม
การคำนวณพื้นที่ของรูปสามเหลี่ยมเป็นปัญหาพื้นฐานที่พบเจอเป็นประจำในสถานการณ์ต่างๆ มีหลายวิธีที่จะหาคำตอบ ขึ้นอยู่กับว่าเรารู้อะไรเกี่ยวกับรูปสามเหลี่ยมบ้าง วิธีเหล่านี้เป็นสูตรหาพื้นที่ของรูปสามเหลี่ยมที่ใช้กันบ่อยๆใช้เรขาคณิต
พื้นที่ S ของรูปสามเหลี่ยม คือ S = ½bh เมื่อ b คือความยาวของด้านใดๆในรูปสามเหลี่ยม (ฐาน) และ h (ส่วนสูง) คือระยะทางตั้งฉากระหว่างฐานกับจุดยอดที่ไม่ใช่ฐาน วิธีนี้แสดงให้เห็นได้ด้วยการสร้างรูปทางเรขาคณิตใช้เวกเตอร์
พื้นที่ของรูปสี่เหลี่ยมด้านขนานสามารถคำนวณได้ด้วยเวกเตอร์ ถ้า AB และ AC เป็นเวกเตอร์ที่ชี้จาก A ไป B และ A ไป C ตามลำดับ พื้นที่ของรูปสี่เหลี่ยมด้านขนาน ABCD คือ |AB × AC| หรือขนาดของผลคูณไขว้ของเวกเตอร์ AB กับ AC |AB × AC| มีค่าเท่ากับ |h × AC| เมื่อ h แทนเวกเตอร์ส่วนสูงพื้นที่ของรูปสามเหลี่ยม ABC เป็นครึ่งหนึ่งของพื้นที่ของรูปสี่เหลี่ยมด้านขนาน หรือ S = ½|AB × AC|
ใช้ตรีโกณมิติ
ส่วนสูงของรูปสามเหลี่ยมหาได้ด้วยตรีโกณมิติ จากรูปทางซ้าย ส่วนสูงจะเท่ากับ h = a sin γ นำไปแทนในสูตร S = ½bh ที่ได้จากข้างต้น จะได้พื้นที่ของรูปสามเหลี่ยมเท่ากับ S = ½ab sin γพื้นที่ของรูปสี่เหลี่ยมด้านขนาน จึงเท่ากับ ab sin γ
ใช้พิกัด
ถ้าจุดยอด A อยู่ที่จุดกำเนิด (0, 0) ในระบบพิกัดคาร์ทีเซียน และกำหนดให้พิกัดของอีกสองจุดยอดอยู่ที่ B = (x1, y1) และ C = (x2, y2) แล้วพื้นที่ S จะคำนวณได้จาก 1/2 เท่าของค่าสัมบูรณ์ของดีเทอร์มิแนนต์หรือ S = ½ |x1y2 − x2y1|
ใช้สูตรของเฮรอน
อีกวิธีที่ใช้คำนวณ S ได้คือใช้สูตรเฮรอนเมื่อ s = ½ (a + b + c) คือครึ่งหนึ่งของเส้นรอบรูปของรูปสามเหลี่ยม
ใช้ความยาวด้านและสูตรที่เสถียรเชิงตัวเลข
สูตรเฮรอนนั้นไม่เสถียรเชิงตัวเลขสำหรับรูปสามเหลี่ยมที่มีมุมขนาดเล็กมากๆ วิธีที่ดีกว่าคือ เรียงความยาวของด้านตามนี้ a ≥ b ≥ c และคำนวณจากวงเล็บในสูตรนั้น จำเป็นต้องใส่ตามลำดับเพื่อป้องกันความไม่เสถียรเชิงตัวเลขในการหาค่า
รูปสามเหลี่ยมที่ไม่อยู่บนระนาบ
ถ้ามีส่วนประกอบของรูปสามเหลี่ยม (จุดยอด หรือด้าน) 4 ส่วน อยู่บนระนาบเดียวกันแล้ว รูปสามเหลี่ยมนั้นจะอยู่บนระนาบเดียวกัน นักเรขาคณิตได้ศึกษารูปสามเหลี่ยมที่ไม่อยู่บนระนาบด้วย ตัวอย่างเช่น รูปสามเหลี่ยมบนทรงกลมในเรขาคณิตทรงกลม และ รูปสามเหลี่ยมเชิงไฮเพอร์โบลาในเรขาคณิตเชิงไฮเพอร์โบลาอ้างอิง
http://blog.eduzones.com/dena/3746 วันที่ 6 กันยายน 2556
ไม่มีความคิดเห็น:
แสดงความคิดเห็น